Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 36(2): e2937, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31661609

RESUMO

The genus Lactobacillus has been widely used in food industry as starter or adjunct culture due to its probiotic features. Its biotechnological features improve the spectrum of uses of lactobacilli, which can affect its applicability directly. In this sense, this literature review gathers information and discusses the biotechnological potential of technological/probiotic lactobacilli aiming to improve food quality and human health. The primary and secondary metabolism generates specific substances, such as organic acids, carbon dioxide, hydrogen peroxide, diacetyl, fatty acids, and bacteriocins, which are determinant due to their probiotic potential, antimicrobial activity, and the development of new food flavors. In order to become industrially and commercially attractive, it is necessary develop a large-scale process with lower production costs.


Assuntos
Biotecnologia , Qualidade dos Alimentos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Probióticos/metabolismo , Humanos , Ácido Láctico/química , Lactobacillus/química , Probióticos/química
2.
Biomacromolecules ; 20(6): 2315-2326, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083979

RESUMO

We describe a process for obtaining nanocrystalline cellulose (NC) by either acidic (H-NC) or alkaline treatment (OH-NC) of microcrystalline cellulose, which was subsequently bonded to magnetic nanoparticles (H-NC-MNP and OH-NC-MNP) and used as support for the immobilization of Aspergillus oryzae (H-NC-MNP-Ao and OH-NC-MNP-Ao) and Kluyveromyces lactis (H-NC-MNP-Kl and OH-NC-MNP-Kl) ß-galactosidases. The mean size of magnetic nanocellulose particles was approximately 75 nm. All derivatives reached saturation magnetizations of 7-18 emu/g, with a coercivity of approximately 4 kOe. Derivatives could be applied in batch hydrolysis of lactose either in permeate or in cheese whey for 30× and it reached hydrolysis higher than 50%. Furthermore, using a continuous process in a column packed-bed reactor, the derivative OH-NC-MNP-Ao had capacity to hydrolyze over 50% of the lactose present in milk or whey after 24 h of reaction. Fungal ß-galactosidases immobilized on magnetic nanocellulose can be applied in lactose hydrolysis using batch or continuous processes.


Assuntos
Celulose/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Kluyveromyces/enzimologia , Campos Magnéticos , beta-Galactosidase/química
3.
Biotechnol Prog ; 34(4): 934-943, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29717554

RESUMO

We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead-Glu) or carboxyl groups through acid solution (Immobead-Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae ß-galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead-Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10-500 mg g-1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g-1 support. Gal immobilized on Immobead-Glu and Immobead-Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half-lifes than the soluble enzyme, where the half-lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934-943, 2018.


Assuntos
Aspergillus oryzae/enzimologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , beta-Galactosidase/química , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...